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Abstract - Multi-robot exploration and mapping studies have demonstrated that it is often more efficient to explore 
unknown areas in parallel rather than with a single agent. However, the question of how to integrate individual maps into 
a consistent global map remains an open research area. This problem, known as map merging, comprises the 
establishment of a frame of reference for multiple mobile robots,  the identification of regions of map overlap, and the 
integration of individual maps to produce a global result. In this work, we build a hybrid map which integrates 
occupancy grid and feature data to solve this problem. This integrated representation permits fast and effective map 
merging.  Experimental results are presented that demonstrate algorithm performance in a realistic scenario.

Key terms: multi-agent, multi-robot, map merging, hybrid maps, cooperative robotics, data fusion, robot sensing.

I. Introduction
Exploration and mapping have been a subject of interest in robotics research over the last two decades. A single 

robot can explore an unknown environment and build a map. However, it is often more efficient when the task is 
distributed between multiple robots, each one exploring a different region [1]. Saving time and energy, multi-agent 
systems can explore an unknown area cooperatively in applications such as surveillance, search and rescue, and 
military reconnaissance. For example, experiments conducted by Howard et. al. [2] used a team of autonomous 
mobile robots to address indoor reconnaissance. The distributed robotic system consisted of 80 heterogeneous robots, 
each equipped with sensors which enabled the robots to undertake mapping, object detection and navigation. Such 
multi-agent systems face many challenges including task coordination,, goal selection for exploration, mapping, 
reliable network design and implementation, etc. 

The variety and accuracy of a robot’s sensor complement affects the pose estimate quality, and thus, a number of 
probabilistic mapping techniques have been developed to ameliorate the consequences of pose estimate errors [3]. 
When multi-agent systems are employed to generate environmental maps, it becomes necessary to merge or integrate 
individual robot maps to produce a consistent global map, and individual and relative robot pose estimates take on 
further importance. Most of the techniques described in the literature assume knowledge of the relative poses for the 
robots [4]. However, if the robots do not initially know where the other robots are, the problem becomes more 
challenging. One interesting solution, is to localize a robot in the other robots' partial maps if possible, as 
implemented in [5]. Assuming each robot begins exploring at different starting points, once two robots can 
communicate, they send their odometry data, LIDAR observations, and maps to each other. Each robot then attempts 
to localize itself in the received map and make a hypothesis for its relative location. The hypothesis is actively 
verified by requiring that the robots meet at an agreed time and place. Then, they merge the two maps into a single 
global map and undertake the same procedure with the other robots. Others have attempted to merge maps without 
depending on odometry or observation information [6], [7]. In this case, having two occupancy grid maps, from 
single robot or multiple robots, one needs to detect the overlapping areas and merge them into one global map if 
possible. Some pose the problem as a search for an optimum transformation that overlaps two partial maps [6]. The 
process of searching is an optimization problem over one rotation and two translation parameters. Thus, the task is to 
maximize an objective function that measure how well two maps agree. In reality, the search is arbitrary and spread 
over the transformation space. For example, in [6], the authors adopt an adaptive random walk algorithm for the 
search process. A heuristic similarity metric guides the process for selecting a direction in the search algorithm. 
Additionally, an acceptance indicator is used to validate the transformations. Although convergence of the algorithm 
is proven, it requires substantial computation to obtain the correct transformation. The work was experimentally 
verified via simulation on small maps, (400*400 matrices) for which every cell, even unknown, is processed. The 
average required number of steps necessary for algorithm convergence for this size map is about 40,000, where each 
step requires approximately 4 msec in a normal-speed computer (Pentium IV, 2.2 GHz). As a result, each merging 
operation could take one to two minutes. Therefore, the approach is best suited for offline applications, or for 
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situations where the robots are not exploring large-scale areas. A modification of the previous work has been recently 
developed and uses an adaptive genetic algorithm to solve the optimization problem [7]. The authors use a similarity 
metric to adaptively change the crossover and mutation probabilities, making the algorithm converge faster. Although 
speed is improved, and a near-optimal transformation solution is obtained, the algorithm is still not very well-suited 
for real-time implementation with large-scale maps.  Thus, even with heuristic techniques and efficient global 
optimization algorithms, searching the transformation space for occupancy grid maps is likely to be computationally 
prohibitive. Other relevant works have achieved better computational performance by extracting geometrical features 
from grid maps, comparing these features, and merging the maps if possible [4][8][9]. In [9], the authors compare 
distinctive features derived from patches of one map with entire secondary maps. The extracted features are 
recognized manually. In [8], it is assumed that each robot has its own map which consists of polylines (i.e., connected 
line segments). To merge two maps, the most salient polylines are extracted from each map.  These lines are 
examined to identify polyline-correspondence hypotheses for the two maps.  These are validated using a shape 
similarity metric and the transformation is applied if the match is deemed good.  Another related technique, presented 
in [4], depends on line segments and the angles between them to identify, choose and validate possible 
transformations. The computation associated with this technique is proportional to the number of the line segments. 
However, this algorithm, depending solely on segment lines, was developed and tested for indoor environments and 
would require extension to accommodate the multiple irregular objects associated with unstructured outdoor 
mapping. 

The work presented in this paper depends on the use of a new hybrid, feature-metric map, to address multi-robot 
map merging problems.  It is similar in spirit to that presented in [4] and [8], in that it uses geometric features to 
identify suitable map transformations. However, the suitability of candidate transformations are evaluated using an 
occupancy-grid-based validation metric adapted from [6].  Thus a hybrid approach is introduced which combines a 
computationally efficient feature-based map transformation technique with a fine-grained grid-based validation 
measure.  The paper presents two principle contributions.  The first is a transformation identification algorithm which 
uses line-segments, circular arcs, and arbitrary curve features and a correlative, frequency-based, candidacy metric.  
The second is the computationally efficient integration of feature-based transformation candidate identification with 
an occupancy grid optimality measure.   In this work, we are able to merge large-scale occupancy grid maps, 
collected from structured or unstructured environments, in a manner which permits real-time implementation. 

This paper is organized as follows. Section II describes how we build a hybrid map. Then, in Section III we 
describe our map merging algorithm. The results of an experimental study are presented in Section IV whereas 
conclusions and suggestions for future work are provided in Section V. 

II. Building Hybrid Maps
There are essentially three mapping paradigms used to represent environments: feature, topology, and occupancy 

grid. Each of these paradigms has advantages and drawbacks. Each kind could be more appropriate for specific tasks 
than others. For thorough surveys on map building, the reader is referred to [10],[3].

There can be many benefits to using hybrid maps, created by combining two or three of the paradigms. In such 
cases, one can exploit the advantages of the constituent paradigms and mitigate their limitations. For example, 
integrated occupancy grid and topology maps can be used for both local navigation (for which occupancy grid maps 
are superior) and path planning (which benefits from topological representations) when developing autonomous 
robots [11]. Moreover, it is relevant to mention that significant success has been achieved in solving SLAM problems 
when using hybrid maps [12], [13]. For this paper, hybridization produces a feature-metric map which is used for 
merging occupancy grid maps. The method used to construct the constituent maps is presented below.
A. Occupancy grid mapping

The robot’s explored area is described by an occupancy grid map. This map is easy to build, describes the 
environment in detail, and is used for validation of the merging algorithm. It is also used to record the location of 
obstacles, which is necessary for safe local navigation. A grid map requires modest computational time to build, but 
can make large demands on memory to maintain. In most cases, grid mapping is done in a probabilistic fashion where 
each grid cell has a value between zero and one to represent the probability of being occupied by an obstacle. In our 
case, we set a threshold so as to decide whether each cell is occupied or not (1 or 0). Unexplored regions are assigned 
a probability of 0.5. Thus, the thresholded grid map represents each cell as being in one of three states, free, occupied, 
or unknown.
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B. Feature mapping

We build our feature map on top of the occupancy grid. This kind 
of map represents the environment by parametric features. Our 
method is capable of representing a LIDAR scanned environment 
map in a parametric fashion.  In general, indoor and outdoor 
environments can be described as a series of lines, circles, and 
arbitrary curves. We identify these features in a disjoint fashion by 
using a sequence of different techniques using a reduced map after 
each operation. First, we extract the line segments and circles from 
the grid map using the Hough transform. 

The Hough transform has several characteristics that make it a 
good choice for extracting straight lines and circles (and other 
parametric curves) from a map.  The transform is: 

• Tolerant of gaps and immune to image noise, and
• Insensitive to partial deformation of the image features, e.g., it 

does not need all the pixels on one line to be contiguous or 
strictly collinear.

For each extracted line, we store the slope, length and the center 
of the line as parametric features. For the circles, we store the center 
and the radius.  We then remove the map cells associated with the 
identified lines (designated as L1, L2, L3.…) and circles (designated 
as C1, C2, C3…) from the map. The grid cells which remain 
represent arbitrary curves or sparse noise.  We next parameterize 
these remain curves (designated as A1, A2, A3,…) by measuring the 
average curve orientation and center of mass.  It is relevant to point 
out, that a variety of shape descriptors could be used to represent the 

Figure 1. (a) A simulated environment, (b) Extracted lines, (c) The curves left after line extraction.

(a) (b)

(c)

UNCLASSIFIED: Dist A. Approved for public release ! 3

Feature Center 
X coord.

Center 
Y coord.

length / 
size

Orienta-
tion

L1 230 346 136 0

L2 205 307 59 0

L3 228 130 113 0

L4 200 117 90 0

L5 300 230 90 90

L6 84 254 74 90

L7 297 250 90 90

L8 82 232 71 90

L9 203 429 49 3

L10 162 364 55 171

L11 202 183 40 0

L12 144 331 52 146

L13 183 265 30 43

A1 241 205 104 42

A2 161 224 198 101

A3 144 258 111 98

A4 244 267 57 152

A5 196 275 38 72

A6 196 366 190 16

Table 1. Parametric Features



curves, including splines, polynomial expansions, etc.  However, for this work a straightforward linear regression and 
center of mass description produced solid map merging results.  Figure1 depicts an environment generated in a 
simulated environment (Player/Stage©) and the sequentially extracted features.  Table 1 lists the associated features 
and their parameter values.  It should be noted that lines or curves are considered to be features only if they are longer 
than a threshold value. This eliminates possibility of spurious map noise from being identified as genuine 
measurement data.

III. Map Merging Algorithm
The goal of our algorithm is to find the transformation (rotation and translation) matrix that is best for matching 

two maps. A series of candidate solutions are identified as map features are compared.  To make a reject or accept 
decision, we adapt a map validation criteria presented in [6].  The metric is used to compare two occupancy grid maps 
after the application of  a candidate transformation.  First, we calculate an agreement and a disagreement function as 
follows.

where the agreement between two maps m1 and m2, is computed as the number of pixels p with associated 
coordinates (x,y), such that point p in map-1 (m1[p]) is equal to point p in map-2 (m2[p]) (i.e., both free, or both 
occupied) where point p is a member of the set C comprising all points which have been identified as free or occupied 
in both maps.  Similarly, the disagreement between two maps m1 and m2, is computed as the number of pixels p with 
associated coordinates (x,y), such that point p in map-1 (m1[p]) is not equal to point p in map-2 (m2[p]) (i.e., one free  
and the other occupied and visa versa) where point p is a member of the set C comprising all points which have been 
identified as free or occupied in both maps.

These two functions, agr and dis, therefore represent how many pixels agree or disagree in the overlapping 
portions of the two maps respectively.

Second, we calculate a matching or validation factor as follows.

In typical cases, the match factor should approach 1.0. In our work, we set 0.85 as an acceptable threshold for 
validating the match between two maps. In reality, one cannot easily lower this factor because wrong merge decisions 
can produce useless global maps and erroneous robot poses. At the same time, a lower factor might be suitable when 
trying to merge low accuracy maps. 

From the extracted features, we need to look for matches between the two sets of features. First, for each line L 
or curve A from the first map, we define a corresponding set which have lines {Li, Li+1, ...} or curves {Ai, Ai+1,..} 
from the other map, which are approximately the same size of that line or curve, respectively. It is useful to establish 
a tolerance to account for uncertainty in the map building process (we accepted features that were within 15% of each 
other).  Second, for each feature in the first map, we determine the absolute angle difference between it and the set of 
corresponding (i.e., similar length) features in the second map.  This produces multiple sets of candidate rotation 
angles (one set for each feature in the first map).  This done, we sort the candidate rotation angles, based on frequency 
of occurrence across all the sets, in decreasing order (i.e., the most frequent rotation angle first) after quantizing them 
to a 1〫resolution.  From this sorted set, we use the first angle as a possible solution for rotation. Next, we follow a 
similar procedure to identify the translation candidates.  We begin by rotating the second map by the candidate angle, 
and then, for each feature’s center of mass coordinates (this time including circular features C1, C2,…), subtract the 
center of mass coordinates associated with each member in its corresponding set (this set comprising like features -- 
line to line, circle to circle, etc. -- in the second map with similar size). Each feature thus produces a set of signed 
coordinate differences (tuples), which are then sorted based on frequency of occurrence in decreasing order.   These 
candidate translations are then applied sequentially to the second (rotated) map, and the corresponding matching/
validation factors calculated to score the quality of the transformations.  

 The algorithm then continues this process, using the next candidate rotation and the corresponding translations. 
Ultimately, we are seeking the largest matching factor across all candidate rotations.  In the end, if the best matching 
factor exceeds the decision threshold (0.85 for example), the corresponding transformation is used to merge the maps; 
otherwise the maps are not merged.  The pseudocode below describes our algorithm more succinctly.
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_______________________________________
Algorithm 1: Map Merging
_______________________________________
1. // Build feature maps
2. F1 = Extract feature (map 1)
3. F2 = Extract feature (map 2)
4. Calculate the rotation candidates R1, R2, ..., Rn.
5. sort the candidate rotation array
6. for k = 1, ..., n
7.   rotate(map 1, map 2, Rk)
8.   calculate the translation candidates T1, T2, ..., Tm
9.   sort the candidate translation array
10.   for j = 1, ... , m
11.       Translate (map 1, map 2, Tj)
12.       match factor = Validate (map 1, map 2 )
13.       if (match factor > current factor)
14.          current factor = merge factor
15.          save current transformation TR (Tj, Rk)
16.       end if
17.    end for
18. end for
19. if current factor > 0.85
20.      global map = merge(map 1, map 2 , TR)
21. end
_______________________________________________
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Figure 2.  Our two robots: RA on the right, RB on the left.



IV. Experimental Results
An experimental study was undertaken to validate the algorithms presented in this paper.  Two Departmental 

robots, “RA” and “RB” were used to collect mapping data outdoors on site.  The area explored bordered a pedestrian 
mall, a building and some decorative cul-de-sacs.  The  robots were built onsite and are depicted in Figure 2.  For 
these experiments, each robot was equipped with LIDAR and an odometry system based on the robot’s kinematics 
and motor encoders.  An open source server/client and simulation system was used for software development and 
implementation. 

(a)
(b)

(c)

Figure 3. Two maps, built independently, have common area (a) Built by RA (b) built by RB. The two maps (c) 
The global map

The two robots independently used probabilistic grid mapping based on the Rao-Blackwellized particle filter 
approach explained in [14]. The filter undertakes state estimation of the robot pose and map based on a motion model 
and a measurement model.  The resulting probabilistic map is thresholded to identify three types of regions:  
occupied, free, unknown. Occupied grids have a probability of 0.7 or more while free cells have a probability 0.3 or 
less and the unknown grids are in between (> 0.3 && < 0.7). The resolution of our map was set to 20 cm/pixel. The 
size of our environment for this experiment was 200*300 pixels. We intentionally let the two robots pass by a small 
common area and then ran the algorithm to see how consistently it could merge the maps to produce a a global 
environment map. Figure 3 shows the two separate maps and the final integrated global map.

 Our algorithm easily identified the common area and returned the transformation matrix within milliseconds 
(with interpretive coding implementations, e.g., Octave, Scilab etc.). The algorithm computational complexity is 
linearly proportional to the number of the features in a map.  Typical values for the agreement and disagreement 
functions were, agr =   4392, dis =139 which leads to a 96% matching factor.  Once the global map is obtained it is 
sent to the other robot to synchronize systems.  It is relevant to point out, that when the global map is formed, grid-
cells which conflict, i.e., points where one map indicates the cell is free and the other map indicates occupied, are 
returned to the unknown state.  Also, this work easily extends to multi-agent systems with more than two robots by 
executing the algorithm in a pairwise fashion. 
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The map matching algorithm performance for maps similar to that of Figure 3 is consistently good.  When the 
region mapped is dominated by arbitrary curves and contains few clear line segments, the map matching algorithm 
performance is reduced.  This is due to the method used to identify the curve orientation, which is sensitive to 
variations in the portion of the curved area mapped and the presence of noise.  This can be addressed with the use of 
more sophisticated curve parameterizations (multi-resolution and disjoint curve parsing present interesting 
possibilities).    

Finally, it is illustrative to point out that this work can also be used to solve localization problems. Of particular 
interest are situations where a robot has a discontinuity in its pose estimation process (e.g., the kidnapped robot 
problem), or where a robot has been given a map yet does not know where it is in this map (e.g. global localization). 
In such cases, the robot can explore the area until it finds a match between its current map and a previous or given 
map. Also the algorithm presented in this paper can potentially be applied to the loop detection problem wherein 
previously visited areas need to be identified. 

V. Conclusions and Future Work
In this paper we introduced a hybrid, feature-metric, map for occupancy grid map merging. Our method has 

produces good results with semi-unstructured outdoor environments, and has demonstrated impressive algorithm 
speed. The experimental results indicate promising potential for the use of hybrid feature-metric maps for merging 
multi-robot maps.

Future work will likely proceed along a number of avenues. Arbitrary curves need to be parsed and/or 
parameterized in a more robust fashion to permit effective application to fully unstructured outdoor environments.  
Furthermore, the proposed merging algorithm could be integrated with probabilistic scan matching steps to improve 
fine resolution alignment of map segments.  The current method depends to a degree on the quality or accuracy of the 
constituent maps being merged; therefore, the introduction of a probabilistic framework for feature parameterization 
could permit a more measured degradation in performance as map noise increases.
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